
Jamama Design
Blaine Simpson

Jamama Design
Blaine Simpson

Published $Date: 2004/04/14 05:46:13 $

Table of Contents
Introduction .. vi

Available formats for this document .. vi
Concise Summary of Jamama ... vi
Current status ... vii
Comparison to Apache's James .. vii

1. Architecture .. 1
Startup .. 2

2. Package and Class Layout ... 3
Top Level Jamama Architecture ... 3
Some More Sample Implementation Classes .. 3

3. Accommodating local Mail User Agents .. 4
mamaproxy .. 4
smtpclient .. 4

4. App Management Use Cases .. 5
5. Some Hairy Design Details .. 6

iv

List of Tables
1. Alternate formats of this document ... vi

v

Introduction
If you notice any mistakes in this document, please email me at blaine.simpson@admc.com
[mailto:blaine.simpson@admc.com?subject=design%20Guide] so that I can correct them. I've just con-
verted this from Texinfo to Docbook, so there are most likely many mistakes in this revision. You can
also email me if you have problems with the procedures explained herein, or if you have questions, com-
ments, suggestions or complaints.

Available formats for this document
This document is available in several formats.

You may be reading this document right now at http://jamama.sourceforge.net/design, or in a distribu-
tion somewhere else. I hereby call the document distribution from which you are reading this, your cur-
rent distro.

http://jamama.sourceforge.net/design hosts the latest versions of all available formats. If you want a dif-
ferent format of the same version of the document you are reading now, then you should try your current
distro. If you want the latest version, you should try http://jamama.sourceforge.net/design.

Sometimes, distributions other than http://jamama.sourceforge.net/design do not host all available
formats. So, if you can't access the format that you want in your current distro, you have no choice but to
use the newest version at http://jamama.sourceforge.net/design.

Table 1. Alternate formats of this document

format your distro at ht-
tp://jamama.sourceforge.net/de
sign

Chunked HTML index.html ht-
tp://jamama.sourceforge.net/desi
gn/index.html

All-in-one HTML design.html ht-
tp://jamama.sourceforge.net/desi
gn/design.html

PDF design.pdf ht-
tp://jamama.sourceforge.net/desi
gn/design.pdf

Concise Summary of Jamama
Jamama is a Java Managed Mail Server.

The functionality is inspired by the excellent mail server Exim [http://www.exim.org], but takes advant-
age of features of the Java language to simplify the regular expression, extension, and pluggability
mechanisms; and takes advantage of Java technologies such as JMX and JAXB to provide real time re-
mote management and dynamic XML configuration, correspondingly.

You configure Jamama by editing the XML configuration file according to the schema, and/or by using
a JMX client (including using a web browser to access the HTML JMX Adaptor). When Jamama starts

vi

mailto:blaine.simpson@admc.com?subject=design%20Guide
index.html
http://jamama.sourceforge.net/design/index.html
http://jamama.sourceforge.net/design/index.html
http://jamama.sourceforge.net/design/index.html
design.html
http://jamama.sourceforge.net/design/design.html
http://jamama.sourceforge.net/design/design.html
http://jamama.sourceforge.net/design/design.html
http://www.exim.org

up, it loads all of the objects that are specified in the configuration file. The configuration file is auto-
matically updated with configuration changes that you make using a JMX client.

Jamama is being implemented according to the Extreme Programming
[http://www.extremeprogramming.org] (aka XP) methodology. The goals of Jamama are purposefully
broad and long-term, but each design decision is nonetheless made according to XP criteria: does the an-
ticipated action/feature/technology directly lead to satisfaction of one (or more) of these goals, without
adding too much work, complexity or size?

Primary goals of Jamama

• Full ESMTP compliance

• JMX compliance

• Schema-validated XML configuration (and automatic saving to same XML

• Full pluggability for instances for

• Mail Routing Director

• Repositories

• Routers (mail filtering, routing and consumption abilities)

• Servers (besides SMTP), such as IMAP, POP, Anti-Spam, Mail-lists

Current status
Jamama is not a functionaly mail server yet. At this time, Jamama has full dynamic XML configuration
and you can administer these objects with any JMX client. JMX constructors have not yet been tied into
the Jamama code, so currently you have to add and remove objects with the XML configuration file
(using all default settings if you wish), and after that you can use a JMX client if you wish. Until we im-
plement notification (or implement the feature some other way), changes are not automatically persisted.
Changes made through JMX will not be persisted to your XML config file until you use save through
the Jamama JMX objec or give the save command through the Jamama console (invoke Jamama with
the -i switch to get a console).

Comparison to Apache's James
There is a large overlap of functionality between this project and Apache's James. The developers of
Jamama are dedicating hundreds of hours, however, because they are unsatisfied with James. In our
opinion, the main goal of James is to showcase the Avalon framework and, in typical Apache project
fashion, to implement Java methodologies and Design Patterns for the sake of it. As a particular ex-
ample, the James project wants to have a servlet-like development model for mail routing, so in order to
accommodate that, they have to separate filtering from message modification and processing-- the prob-
lem is, these tasks must be performed together if they are to be done right.

One direct consequence of the James projects' infatuation for "Mailets" is, they "accept" all Spam and
only filter/route completely accepted messages. They somehow twist this extreme limitation to sound
like a benefit by calling James a "black hole for Spam", because James servers have to use their pro-
cessing and RAM power to consume all Spam sent to them. Users of Exim have understood for years

Introduction

vii

http://www.extremeprogramming.org

that the best strategy is to handle routing at the earliest point possible. The Jamama "Router" interface is
much more powerful than the Mailet interface, but the lifecycle was not designed to emulate the Servlet
lifecycle. Another symptom of the inability to implement useful features because they are too busy with
Design Patterns, is the lack of adoption of Avalon JMX capabilities. To summarize: Jamama is about us-
ing Extreme Programming to accommodate the email problem domain. James is about using the email
problem domain to accommodate Avalon and a score of Design patterns.

Introduction

viii

Chapter 1. Architecture
Essential Objects

Jamama Object/Instance (aka a
Configurable)

Objects that are directly configurable through JMX are Configur-
able. This includes Directors (normally only one), Routers, Re-
positories and ThirdPartyConfiguroros. These are instantiated by
virtue of having a block under <instances> in the Jamama config-
uration file. (When we implement it, you will be able to create
new instances with JMX also).

Repository A generic data getter/fetcher/remover interface to a storage re-
ceptacle backend like a DB or a FS branch. A Repository must be
able to handle the type of object that you need to persist, and there
may be multiple repositories that can persist a particular object
type. Each Repository may implement the ability to manage mul-
tiple storage objects, so that one Repository could store the same
object to different files or to different mailboxes.

item Mit = Message-In-Transit. Corresponds to elements in a Sendmail "mailq". Message in mail
system which has not reached its final destination (i.e., not de-
livered to a local mailbox or a remote system or dropped).

Director (Initiates all routing) This is the only object that "initiates" non-ping routing for a Mit.
(A Router may reroute a Mit, but that is nonetheless a Mit in-
process; to route ANOTHER Mit, a Router must persist a new
Mit (and Server will thereafter pick it up). Periodically runs rout-
ingRun(null, Mit.STATE_RUNNOW, false) and routingRun(null,
Mit.STATE_DEFERRED, false). This attempts to route all Mits
that are ready to go.

Pipeline Sequenced list of Routers. If every configured Router in were to
return STATUS_CONTINUE, they Routers would each be ac-
cessed in this order and finally the default routing method in Dir-
ector, which will abort the Mit.

Jamama The main Jamama process, Jamama is a JMX Agent. The Direct-
or thread (above) is the main thread, and may have subthreads.
Jamama also starts up other Servers, each in its own thread, (and
they may also have subthreads).

Router Filtering AND Mit consumption abilities. A Mit is "routed"
through a chain of Routers.

Server Servers must expose the "run" attribute, i.e., setRun(bool) and
getRun(). This will typically be accomplished by implenting Run-
nable and by invoking (thread.start(this)) for setRun(true). These
threads typically generate mits like

Director.createMit().persist(false)

It may have sub-threads, of course.

1

A Server may also be a Router. (E.g., SMTPServer is primarily a
Mit Generator that listens on smtp port in order to create Mits, but
it's route() method is also called by Mits running in the same
thread-- and only succeeds if the current thread is connected to
that host in ETRN mode).

Startup
All of the instances in the main configuration XML file are instantiated.

• The Director and its pipeline.

• Repositories

• Routers

• Servers

• Utility objects used or shared by any of the objects above

•

These objects can thereafter be remotely managed with JMX. For any config change, routers are re-
validated and the XML config file is re-written.

Architecture

2

Chapter 2. Package and Class Layout
Top Level Jamama Architecture

Note

Need to make a diagram image of this

The basic package strategy is that the main com.admc.jamama.Repository class holds only objects
shared among objects in different packages, plus the main Interfaces and the Jamama class itself. Ex-
ternal data sources like databases and file systems.

• mamaproxy (interface: com.admc.jamama.DirectorProxy; DirectorProxy-
Adapter; MamaProxy)

• smtpclient (class: com.admc.jamama.smtp.SMTPClient); [wrapper
scripts]

• Jamama JMX Agent JVM (class: com.admc.jamama.Jamama)

• Repository. (interface: com.admc.jamama.Repository; RepositoryAd-
apter; classes: com.admc.jamama.repository.X)

• Server. (interface: com.admc.jamama.Server; ServerAdapter;
classes: com.admc.jamama.server.X)

• Director (interface: com.admc.jamama.Director; classes:
com.admc.jamama.director.JamamaDirector)

• Mit (class: com.admc.jamama.Mit)

• Router (virtual interface: com.admc.jamama.Router; RouterAd-
apter; classes: com.admc.jamama.router.X)

• Proxy (com.admc.jamama.DirectorProxyAdapter; e.g. MamaProxyAd-
apter)

Some More Sample Implementation Classes

com.admc.jamama.router.MailboxRouter extends RouterAdapter

com.admc.jamama.repository.MailboxRepository extends Repository

com.admc.jamama.router.SMTPRouter extends RouterAdapter

com.admc.jamama.server.smtp.Server

3

Chapter 3. Accommodating local Mail
User Agents
mamaproxy

A shell script that uses the DirectorProxy interface to make an Mit. It "emulates" a local connection to
Sendmail, as used by MUAs. DirectorProxy uses MBean proxy to permit other JVMs to invoke Direct-
or.createMit().persist(false). All Mits are created with Director.createMit() (because the Director must
identify the Repository) and then be persisted with mit.persist(false). Traditional "mailx" MUA with
Sendmail:
mail -> (/usr/sbin/sendmail -i recipient -> ROUTE) ->...

IF local mailbox, then no IPC is needed because the file is just written. If remote, then cfg files are con-
sulted and mail is sent out. With Jamama, the transmitter program always just "relays" to Jamama.

Justifications

• Since there are a bunch of dynamic configuration structures, it will take a considerable amount of
work to load all of those structures. We just keep a JVM running with those structures and connect
to that. (The alternative would be to keep restarting our main JVM to check Mit's instead of running
as a daemon-- that would kill remote Admin ability, etc.).

• We use a management/director process to interface to mailbox persistence (normally in a database).
For efficiency, we run these inside our main JVM instead of restarting this management/director pro-
cess all the time or of running another JVM. Need IPC to these processes to write to local mailboxes.

mail -> (/usr/sbin/mamaproxy args) -> Director.createMit().persist(false)
(by remote JMX).

Note

(postnote: and need to set mit.state = STATE_ROUTENOW).

smtpclient
A shell script that makes a TCP/IP SMTP xmit to any SMTP server. By default it goes to the smtp port
on localhost, so it can be used to "emulate" a local connection to Sendmail, as used by MUAs.

4

Chapter 4. App Management Use
Cases

(to determine what needs to be an MBean object).

Management of Mits

• Drop (destroy)

• Thaw (decrease retry time)

• Freeze (increase retry time)

• Modify spam status

• Modify virus status

Management of Router settings

• What email domains to handle

• What relays to permit in

• What email domains to handle

• What relays to permit in

Management of Server

• start

• stop

Management of Pipeline

• add

• remove

• modify-sequence

5

Chapter 5. Some Hairy Design Details
FAILURE/RETRY info The best place to store failure information is in the object CAUSING

the problem. Like in the UnavailableHostCache, not in the message it-
self. The next time routingRun() is run, all Mits waiting for that host
will go.

SMTPCaching

• Keeps per-host status info. It needs to be shared among all Internet
Routers.

• Operation: update(domain,ip) Update SMTPCache records for
host and/or domain. Call

SMTP RECEPTION

MAIL FROM:
mit = Director.createMit();
mit.state = STATE_INCIPIENT;
try {

Director.headPipe.route(mit, true, null);
} catch (Exception e) {

Send error status to client.
mit = null;
return;

}
for each (RCPT TO:) {

try {
Director.headPipe.route(mit, true, null);

} catch (Exception e) {
Tell client that this recipient not allowed.

}
}
DATA: (? skip this ?)

try {
Director.headPipe.route(mit, true, null);

} catch (Exception e) {
Send error status to client.
mit = null;
return;

}
mit.state = Mit.STATE_ROUTENOW
mit.persist(false);
// MIT will send it as soon as it can. Don't want to make the
// client wait for us after we have persisted it.

SMTP

• BULK TRANSMITS done by 1-level recursion, not by multith-
reading. (I think no need to check for recurse since there is no way
to recurse other than 1 level in our recursion one case.

• This incurs no multi-threading, although we have to deal with the
existing multithreading in SMTPSession).

6

OUTGOING SMTPConsumer

• Always SMTPCaching.update(domain,ip) after every successful or
failed conn.

• Don't use the Incoming server for outgoing unless client ran
ETRN.

• It would be nice to use JavaMail, but I don't know if that supports
bulk xmits. If not, could still use JavaMail for prototyping the
SMTPSharedConsumer.

• After first successful xmit to this domain, run

Director.routingRun("nextPipe == " + mypipe
+ "destdomain == '" + destdomain + "'");
If there are more Mits for this target ipaddr, then this

router() method will be called recursively.
++recursecount;
try {

if (recursecount > 1) {
if (state != STATE.GREETED) throw... // assertion
piggyback(mit);
return;

}
} finally { --recursecount; }
piggyback(mit) {

out.println(mit.this...
flush();
return;

}

INCOMING SMTPServer

•

• Always SMTPCaching.update(domain,ip) after every success-
ful or failed conn.

• Need to maintain a ETRN mode HashMap of currentThread X
session.

• When a SMTPSession gets an ETRN, it can run

Director.routingRun("nextPipe == " + myPipe
+ ip == '" + ipaddr + "'");

SMTPServer.route(Mit mit, boolean ping) {
if (ping == true) return;
session = (SMTPSession) etrnSessions.get(Thread.currentThread());
session.piggyback(mit); // Same as in SMTPSession
return;

}

Some Hairy Design Details

7

	Jamama Design
	Table of Contents
	Introduction
	Available formats for this document
	Concise Summary of Jamama
	Current status
	Comparison to Apache's James

	Chapter 1. Architecture
	Startup

	Chapter 2. Package and Class Layout
	Top Level Jamama Architecture
	Some More Sample Implementation Classes

	Chapter 3. Accommodating local Mail User Agents
	mamaproxy
	smtpclient

	Chapter 4. App Management Use Cases
	Chapter 5. Some Hairy Design Details

